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In this paper we present an abbreviated discussion of the linear systems analysis in the time domain.
We then consider the qualitative character of the behavioral dynamics predicted using the linear form
of the analysis. The analysis is then extended to a second-order form. We illustrate some relevant
new features introduced by the second-order form with a special case example.
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Linear systems analysis has proven useful
in describing the behavior seen in a number
of situations, principally the steady-state be-
havior supported by either variable-interval
(VI) schedules (McDowell, 1980; McDowell,
Bass, & Kessel, 1983; McDowell & Kessel,
1979), or variable-ratio (VR) schedules (Mc-
Dowell & Wixted, 1986, 1988). Schedules with
time-dependent properties represent a new type
of test for the analysis. The goal of this paper
is to give the qualitative features predicted for
the operant behavior of an organism to a sched-
ule with a step transition in its reinforcement
rate.

In our past calculations, we have employed

This paper was presented at the Jacksonville Confer-
ence on Behavior Dynamics held at Jacksonville State
University, Jacksonville, Alabama, June 1990. J. J Mc-
Dowell received support for this work from the National
Science Foundation (BNS 8908921). Robert Kessel would
like to acknowledge support for this work by Mullard
Space Science Laboratory, which is supported by a grant
from the Science and Engineering Research Council. We
would like to thank the organizers of the conference, Jack
Marr and Bill Palya, for all their efforts. In addition to
a stimulating intellectual atmosphere, they set a wonder-
fully high standard for food at a conference. Also we would
like to thank Tony Nevin and John Staddon for, respec-
tively, chairing and serving on the panel discussion of our
paper. Additionally, we would like to thank Billy Baum,
John Gibbon, Peter Killeen, Jack Marr, Joel Meyerson,
Tony Nevin, Glen Sizemore, and especially John Staddon
for the interesting questions they raised during the panel
discusison. We have included some material from the panel
in this paper. Finally, we thank Ramona Kessel, Mike
McKinley, Mark Pevey and Lisa Shaw for their helpful
comments on a previous draft of this paper. Ronald Bass’s
address is Ronald Bass & Associates, P.O. Box 6907,
Colorado Springs, Colorado 80934-6907. Robert Kessel’s
current address is Department of Psychology, Emory Uni-
versity, Atlanta, Georgia 30322. Requests for reprints
should be sent to J. J] McDowell, Department of Psy-
chology, Emory University, Atlanta, Georgia 30322.

a frequency-domain analysis. References to the
frequency domain mean the discussion con-
cerns properties of behavior, such as rate, that
extend over time. Although the frequency do-
main is convenient for problems involving av-
erage rates, the underlying basis for the anal-
ysis can be somewhat less than obvious. We
have recently developed an equivalent for-
mulation of the analysis (McDowell, Bass, &
Kessel, in press) that uses the time domain.
When one refers to the time domain, one is
talking about behavior as it occurs in real time.
In addition to a clearer basis for past results,
the new formulation provides an extension to
a more general analysis. As will be shown in
the latter half of this paper, this more general
analysis may prove useful in understanding
behavioral dynamics.

We begin the paper with a development for
the time-domain version of our linear analysis.
The resulting general form is an integral equa-
tion. The structure of the equation and the
kernel appearing in the integrand are then
discussed. With this framework established,
we consider the linear dynamics expected from
a simple transition in reinforcement rate. Next,
we return to the question of how behavior
depends on the reinforcement schedule and
consider an extension of the analysis to include
quadratic or second-order effects. Finally, we
show some of the new dynamics possible with
a second-order form, again with reference to
a simple transition in reinforcement rate.

LINEAR SYSTEMS ANALYSIS IN
THE TIME DOMAIN

There is a convenient development for our
application of the linear systems theory that
can be expressed solely in the time domain.
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We begin this development with the assertion
that a specific behavior at any particular mo-
ment is a linear function of past reinforcers
contingent on that behavior. This assumption
of linearity will be relaxed later when consid-
ering the second-order formulation. To specify
completely the form of our analysis will re-
quire addressing two more aspects of simple
schedule-controlled behavior. We must allow
for a description of how individual reinforcers
delivered at different times prior to the be-
havior affect that behavior, and we must allow
for variations among organisms and species in
this description. Because the second and third
assumptions only require the analysis to per-
mit an expected type of variability, they are
rather softer or more subtle assumptions than
the assumption of linearity. Rather than jump-
ing directly to a mathematical formulation of
the analysis, we will discuss these three un-
derlying assumptions in more detail.

The basic premise for the time-domain form
of our analysis is the existence of a linear re-
lation between behavior and the reinforcement
schedule. The usual experimental paradigm
for a behavior analyst is one in which a re-
sponse produces some consequence according
to a particular schedule of reinforcement and,
after some period of time, the organism shows
some characteristic pattern of operant behav-
ior. To make a succinct statement of our linear
premise within such an experimental setting,
a few words about what is meant, in general,
by a linear model may prove helpful. Linear
models deal with situations in which a specific
degree of freedom is altered by a probe under
the experimenter’s control. The basic idea of
the experiment is that the probe alters the
system somewhat, and the resulting change in
the system’s degree of freedom has a linear
dependence on the probe’s intensity. For ex-
ample, one applies a known force to a spring
and then relates the resulting elongation to the
applied force with a constant of proportion-
ality. A condition that is usually concomitant
is that the probe’s intensity is modest. For most
systems in nature, if you drive them hard
enough the linearity will fail in some way (e.g.,
when the stress on a spring exceeds the elastic
limit and the spring undergoes plastic defor-
mation, or when sound intensity shatters a
crystal, etc.). Despite this type of restriction,
a linear treatment of a system will often yield
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a tractable mathematical problem that can be
studied using an extensive set of methods. So
unless one has a good a priori reason to begin
with a nonlinear model, a linear treatment is
the standard opening of choice. Returning to
the analysis, we can now connect a general
linear model to the familar operant condition-
ing experiment. The probe used is the rein-
forcement schedule from its start at time zero
to some given time ¢, and the degree of freedom
is the organism’s operant behavior at that given
time ¢. The development to follow will yield a
general form for an organism’s operant be-
havior at the end of a span of time during
which a reinforcement schedule has been in
effect.

A second assumption basic to our analysis
is that reinforcers occurring at different times
prior to the behavior affect the behavior with
different magnitudes. As an example, a rein-
forcer delivered 10 s ago is assumed to have
more impact on present behavior than a re-
inforcer delivered 2 weeks ago. A form of our
second assumption is a standard working
premise in much experimental work. If re-
sponding is allowed to stabilize under one
schedule and then to stabilize again under a
second schedule, it would not make much sense
to compare the performance during the two
conditions unless one is confident that the
steady-state performance in the second con-
dition is independent of the first condition. The
required independence is usually demon-
strated by showing that the behavior supported
by the two conditions does not show ordering
effects. In our analysis, we are extending the
notion to include the possibility that the effect
of a reinforcer fades to zero by some charac-
teristic process. However, because a detailed
knowledge of how a reinforcer’s effect.fades
with time does not presently exist, we will set
up the analysis with sufficient generality to
allow consideration of any possible process.
Hence, the second assumption is primarily an
assumption of existence.

A final assumption allows for the expected
variability among organisms by asserting that
the time scales relevant to the behavior can
vary from organism to organism. In its sim-
plest form, this third assumption states that
the characteristic process by which the effect
of a reinforcer fades to zero can be different
for different organisms. As will be seen, the



LINEAR SYSTEMS ANALYSIS

379

o+

' 1 time
B(t)
-t
| (t—1t) —
6 t" t 1 time

Fig. 1.

The top panel shows the relation of B(¢) and the time of a single reinforcer delivered at time ¢’ within the

interval 0 - ¢. The bottom panel shows the relation of B(t) and the times of two reinforcers delivered at times ¢’ and

t” within the interval 0 - ¢.

first two assumptions will determine the gen-
eral form for a linear dependence of behavior
upon the reinforcement schedule. The effect
of the varying time scales of the third as-
sumption, on the other hand, is isolated to
changes in time scale and form for one math-
ematical function used within the analysis.
These changes in form reflect the differences
among organisms. At first pass the third as-
sumption may seem merely a restatement of
the second. Its emphasis, however, is rather
different. To satisfy the third assumption, the
analysis must allow consideration of any time
scale.

Using these three assumptions we can de-
velop a general expression for behavior. Our
development will move from the linear for-
mulation for an extremely simple reinforce-
ment schedule to that used with increasingly
general schedules.

One Reinforcer

Consider a single reinforcer in the interval
0 — ¢t and then ask what behavior a linear
model predicts at the end of the interval. The
arrangement of times is shown in the top panel
of Figure 1. If the delivery time ¢’ of the re-
inforcer is fixed, then the expression for the
behavior with the posited linear dependence
upon reinforcement is

B(t) = GR(t), )

where G is some constant characteristic of the
organism. By using this form we are tacitly
acknowledging that the behavior is connected
only to the single reinforcer at ¢', because we
have ignored the rest of the interval 0 - ¢. For
the purposes of this paper, it is sufficient to
note that R(¢) and B(t) describe the measur-
able characteristics of reinforcement and be-
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havior as a function of time. Beyond requiring
that functions exist that both give a faithful
representation of the experimental situation
and are piecewise continuous, the functional
form will not affect the results. For a detailed
discussion of a form useful as a representation
of R(¢) and B(t), the interested reader can
consult our earlier work (McDowell et al.,
1983; McDowell & Kessel, 1979).

Our first generalization is to allow the de-
livery time for the single reinforcer to be any-
where within the interval 0 - ¢. The second
assumption, that the length of time elapsed
since the reinforcer’s delivery affects its impact
on behavior, now comes into play. As a result,
the expression for a linear dependence of be-
havior upon the reinforcer will become slightly
more complex. As shown in Figure 1, the
elapsed time is given by the difference ¢t — ¢'.
A large value for this time difference would
place the reinforcer’s delivery far into the past;
a small time difference indicates a recent re-
inforcer. To satisfy our second assumption, the
analysis must differentiate between these var-
ious possible time differences. The second as-
sumption is expressed mathematically by in-
troducing a dependence on the time difference
t — t'. The linear expression for the behavior
is given by

B(@t) = Gt — t")R(). 2)

The form of Equation 2 is nearly the same as
that obtained when ¢’ is fixed. The constant of
proportionality G becomes a weighting func-
tion dependent on the time difference ¢ — ¢
and denoted by G(¢ — ¢'). The function G(¢ —
t') describes how significant an individual re-
inforcer is to the organism’s behavior at time
t when delivered at different times prior to the
behavior. An extended discussion of this
weighting function, G(¢ — t'), will be presented
below. It is important to note that Equation 2
is still a linear relationship between reinforce-
ment and responding, irrespective of the form
used for G(t — t').

Two Reinforcers

Next consider a schedule that delivers two
reinforcers within the interval 0 — £ One of
the reinforcers is delivered at the time ¢', the
second reinforcer at the prior time ¢”. The
arrangement of the two reinforcers is shown
in the bottom panel of Figure 1. Each rein-
forcer makes some contribution to the behavior
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at time £. The behavior due to the reinforcer
at ¢’ alone would be

B.(t) = Gt — t")R("). 3)

Similarly, the other reinforcer in this example
by itself results in the behavior

B.(t) = G(t — t")R("). 4

Using the property of linear systems called
linear superposition, the behavior due to both
reinforcers is

B(@) = Gt — t")R(t') + G(t — t")R(t").
©)

If the effects of the two reinforcers are not
independent, so that one is unable simply to
add their contributions as in Equation 5, then
the underlying system is nonlinear. This is not
an additional assumption required by the anal-
ysis, but something that follows in any linear
system. In fact, an equation like Equation 5
is commonly used as the definition for a linear
system.

General Linear Form

A general form for the linear dependence of
the behavior at time ¢ is found by continuing
the superposition used to arrive at Equation
5. For a set of reinforcers delivered at the set
of times ¢y, ¢, t3, . .
Equation 5 is

B(t) = G(t — t)R(t;) + G(t — t))R(¢,)
+ -+ G(t — ty)R(ty), (6)

or using a summation to make the expression
a bit neater,

., tn, the generalization of

B(t) = ) G(t — t,)R(t,).

n=1

Q)

Our usual representations for R(¢) and B(¢)
(McDowell et al., 1983; McDowell & Kessel,
1979) involve piecewise continuous functions.
Hence, we need to convert the sum to an in-
tegration. The resulting expression for the be-
havior is

B(@) = f G(t — )R(t")dt'. (8)
[}

In Equation 8 each segment of R(¢) within the

interval 0 — ¢ will contribute to B(t). Effec-

tively, Equation 8 is a general linear mapping
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from the reinforcement schedule over an in-
terval of time to the operant behavior at the
end of the time interval.

We used the interval 0 — ¢ throughout the
development leading to Equation 8 as the pe-
riod of time over which a reinforcement sched-
ule was in effect. There is nothing fundamen-
tal to this specific span of time. One can
generalize slightly and frame the analysis us-
ing t,, where t, < ¢, as the starting time.
Switching the interval for the reinforcement
schedule under consideration to ¢, — ¢ simply
changes the lower integration limit of Equa-
tion 8 as

B(@) = J: ‘G(t — YRt 9)

The generalization expressed in Equation 9 is
useful for cases in which one wishes to assign
time zero some other significance. The reader
should note that Equation 9 simply allows one
to translate the analysis leading to Equation
8 to other intervals of time that may be of
interest. It is just a matter of taste whether one
refers to Equation 8 or Equation 9 as the basis
of the linear analysis in the time domain. In
the present paper we will use Equation 9 to
handle negative times.

As we noted at the outset, one can reach
Equation 8 without reference to the detailed
forms for R(t) and B(t). The development for
Equation 8 rests on the assumption of linearity
and the assumption that reinforcers delivered
at different times can have varying impacts on
an organism’s behavior. Of course, Equation
8 would be of very limited use if one were
unable to find functions that faithfully rep-
resent the character of the reinforcement
schedule and the supported behavior. Conse-
quently, Equation 8, or a related form, can be
thought of as the framework for our analysis.
Selection of an appropriate representation for
R(¢) and B(¢) an the work required to calculate
specific results (e.g., a rate equation) are the
other parts of our analysis. Working in the
frequency domain to compute rate equations,
as we have done in the past, will emphasize
this latter part of the analysis.

It is important to note that our earlier for-
mulation of the analysis can be readily recov-
ered from Equation 8. All that is involved is
the transformation of Equation 8 to its equiv-
alent frequency-domain form using Laplace
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transforms. Hence, if one wished, one could
go back and rederive our past results.

Kernels and the Structure of Equation 8

In equations with the structure of Equation
8, the weighting function, G(t — t'), is called
a kernel. In general, a kernel’s action is the
transformation of one function into a second
function with the aid of an integration. (The
formal name for the complete integral relation
such as Equation 8 is a functional. One could
describe the relationship between B(¢) and R(¢)
by saying that B(t) is a linear functional of
R(2).) Consider the elements that make up
Equation 8. The description of the reinforce-
ment schedule is isolated in the function R(¢).
Similarly, B(t) isolates the description of the
behavior to a second function. The idea that
we can use such representations has been
around since the earliest form of our analysis
(McDowell & Kessel, 1979). The third ele-
ment of Equation 8 is the kernel G(t — ¢').
Now, recall that G(¢ — ¢') first arose in Equa-
tion 2 as the proportionality constant relating
the input (i.e., the reinforcement schedule) and
the output (i.e., the measured operant behav-
ior). As the kernel in Equation 8, G(¢t — t) is
the connection for a general linear transfor-
mation of R(¢) into B(¢). Hence, in our anal-
ysis, G(¢ — t') contains the description of the
organism under study. Additionally, the anal-
ysis is framed so that the kernel, G(t — t'), is
independent of the reinforcement schedule, as
can be seen by inspection of Equation 8.

It turns out that one need not know G(t —
t') exactly to get some results, as we have shown
previously (McDowell et al., 1983; McDowell
& Kessel, 1979; McDowell & Wixted, 1986,
1988). In this paper we will be using a specific
form for the kernel to illustrate some quali-
tative features of the behavioral dynamics pre-
dicted by our analysis. Some further discussion
of Equation 8’s kernel is needed to provide a
context for the kernel form we are going to
employ.

Although the form of G(¢t — ¢') is presently
unknown, there are some conditions that G(¢
— t') should satisfy. These are: (a) A reinforcer
delivered a very long time ago is unimportant,
so lim,_,_,G( — t') = 0. (b) Also because an
organism cannot respond instantly to a rein-
forcer, lim,_,_oG(t — ¢') = 0. (c) Because or-
ganisms do, in fact, respond on schedules of
reinforcement, the kernel has to be nonzero
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Fig. 2. The top panel shows a possible form of the kernel in Equation 8. The bottom panel shows the form of a
rectangular kernel that can be used as an approximation of the more general form shown in the top panel.

between these two limits. A possible form for
the kernel of Equation 8 that satisfies these
conditions is shown in the top panel of Fig-
ure 2.

In Figure 2 the time difference ¢ — ¢' is a
time into the past. Small values of ¢ — ¢’ are
very recent times; for example, ¢,.,, is the short-
est time before a reinforcer can have an effect
on behavior. As shown in Figure 2, G(t — t')
is small until after ¢, has elapsed. Similarly,
large ¢ — ¢' means times long ago, and, for
time differences greater than some limiting time
tim, G(t — t') goes to zero. This drop of G(t
— t') to zero as the time difference between ¢
and ¢’ increases corresponds to a reinforcer’s
fade to insignificance as the elapsed time be-
tween its delivery and present behavior exceeds
some time characteristic of the organism.
Hence, as an order of magnitude estimate for
tim, one could use the period of conditioning
needed for an organism’s steady-state respond-
ing to be established. For a typical schedule

and a conservative stability criterion, ¢, is
about 25 sessions. Between these two limits
the kernel shown in the top panel of Figure 2
has the finite values needed so that when used
with Equation 8 the reinforcement schedule
R(t) will generate some operant behavior B(¢).
There is one further point that should be made
about the kernel shown in the top panel of
Figure 2. The analysis does not require one
universal form. The opposite is likely to be the
case. For example, it is reasonable to expect
tim to be considerably longer in humans than
in pigeons. Allowing for variations in G(¢t —
t') among different organisms (within as well
as across species) is a reflection of the third
assumption in our analysis.

In the long term, if the analysis is to be
generally useful, one will have to be able to
measure G(¢ — t') on one schedule and then
predict the behavior seen with other schedules.
This raises a final point on the kernels. There
is nothing mysterious about these kernels. They
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can be determined from sufficiently detailed
experimental data. For example, one could
work from the local structure data such as that
of Palya (1992). One would use such a data
set to construct the frequency-domain forms of
the reinforcement schedule and operant be-
havior via either the Laplace or Fourier trans-
forms. The frequency domain form of the ker-
nel then follows as
B(s)

GO = Ry

G(¢t — t') can then be recovered by applying
the inverse transform to G(s). The measure-
ment of a kernel and the subsequent demon-
stration of the kernel’s invariance under change
of the reinforcement schedule is a critical test
of our analysis. Failure of the kernel’s invar-
iance would suggest serious flaws in the anal-
ysis.

(10)

SOME LINEAR DYNAMICS

To illustrate the dynamics predicted by
Equation 8 we need an analytic form for the
kernel. Although one could find a form that
fits the kernel shown in the top panel of Figure
2, a simpler kernel will be sufficient for our
present purpose. Perhaps the simplest model
that satisfies the conditions we have set uses a
rectangular kernel. The expression for a rect-
angular kernel is

G,<t—t’>={1 e vhere 1)

A plot of Equation 11 is shown in the bottom
panel of Figure 2. If ¢, < t;,,, then the rect-
angular kernel may be simplified further by
using the reasonable approximation for the
rectangular kernel of

_,~1 0<t_t'<t“m
Gt =) = {0 elsewhere :

0 elsewhere

(12)

Because our present purpose is only to find
the rough qualitative dynamics expected with
a linear analysis, Equation 12 will be em-
ployed.

The kernel given in Equation 12 is related
to the “time windows” ideas of Staddon (1988)
and Killeen (1981), with ¢, filling the role of
the length of the window. For example, by
changing from 1 to 1//, where J is Killeen’s
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window length parameter, in the upper con-
dition of Equation 12 and converting Equation
8 to the appropriate discrete summation, one
can recover Killeen’s moving average. Simi-
larly, Killeen’s exponentially weighted moving
average can be generated with an exponen-
tially decaying kernel and discrete summation.
In both these other analyses the underlying
structure, the endpoint behavior dependent on
the preceding reinforcement, is similar to our
own. However, a detailed comparison of our
analysis and other analyses, although inter-
esting, would take us far from the topic of
dynamics.

At this point we can now find some quali-
tative properties of the dynamics predicted by
the analysis. The problem we consider is: Us-
ing the simplified rectangular kernel of Equa-
tion 12, what kind of dynamics are obtained?
We will further restrict the problem to one of
the simplest situations for which dynamics has
relevance: the case of a step transition in the
reinforcement schedule. To provide a well-de-
fined special case, consider a transition at the
time ¢t = O between a VI 80-s schedule of
reinforcement and a VI 20-s schedule. The
transition is unsignaled. The transition be-
tween two reinforcement schedules is shown
schematically in Figure 3. This situation, where
the times before the transition correspond to ¢
< 0, will require the use of Equation 9. In
this example the VI 80-s schedule has been
running since ¢ » —o0 and the VI 20-s sched-
ule then continues in effect until ¢ - +oo.
Under these circumstances the question of dy-
namics becomes a question of how the behavior
changes after the step transition in reinforce-
ment rate at ¢ = 0.

For t,, which occurs before the transition,
the behavior is given by substituting Equation
12 into Equation 9, which yields

B(t) = J:_r Ryigo(t)dt'.

In Equation 13 the kernel’s only effect is to
set the limits of integration, because its value
is either 1 or 0. The region of time that con-
tributes to the integration in Equation 13 is
shown in the top panel of Figure 3. This should
be “steady-state” VI 80-s behavior because the
contributions to the behavior come solely from
the VI 80-s schedule.

The next two times, ¢, and {5, are transition
cases. The expressions of the behavior are

(13)
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Fig. 3. A step transition in the reinforcement rate of a VI schedule and the regions of time contributing to the
integrals of Equations 13, 14, 15, and 16. In each of the four panels, the vertical pips are the locations of the reinforcers.
To be completely rigorous one would consider a statistical ensemble of all distributions of reinforcers that satisfy both
the VI 80-s schedule for ¢ < 0 and the VI 20-s schedule for ¢ > 0. The times t,, t,, 5, and ¢, used in computation of
the resulting transition in behavior are shown along the time axis of the relevant panel. In (a) only the VI 80-s schedule
is contributing. The region of the integration is shown as the crosshatched band beginning at ¢, and extending off the
plot to the left. This end of the region is for small ¢, — ¢’ values. The other end of the integration region is off the left
edge of the plot where ¢, — ¢’ = t;,,,. In (b) the VI 20-s schedule begins to make a contribution to the integral. The
VI 20-s schedule’s contribution comes from the small region between ¢ = 0 and ¢ = ¢,, which is shown as the shaded
band. The contribution from the VI 80-s schedule is the crosshatched band running from ¢ = 0 off to the left of the
plot. In (c) the situation is similar to (b), but as ¢; > ¢, the VI 20-s schedule makes a larger contribution to the integral,
and as shown on the plot, the shaded band increases in length. Finally in (d) the situation when ¢, > ¢, is shown.
The point ¢, is somewhere off the plot to the right. The shaded band of the VI 20-s schedule’s contribution seen on
the plot is the end of the integration interval where ¢, — ¢’ reaches t;,.
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Fig. 4. Response rate as a function of time near a transition in reinforcement rate with a rectangular kernel.

B(t) = J:O u Ryiso(t)dt’

t2
+ f Rypo(t')dt' (14)
0
and
B(t;) = J:o_tr Ryygo(t)dt’
+ f Rypo(t)dt'. (15)
0

In Equations 14 and 15, there are contribu-
tions from both schedules. The regions of time
where the VI 80-s and VI 20-s schedules will
contribute to the behavior at times ¢, and ¢,
are shown in the middle two panels of Figure
3. Because the VI 20-s schedule supports a
higher steady-state response rate, there should
be a higher response rate at ¢, because Equa-
tion 15 has a larger contribution from the VI
20-s schedule.

Finally, at ¢, where ¢, > t;,, a new steady
state, the VI 20-s steady state, is obtained. The
expression for this new steady state is given
by

By = Rewtr.  6)

Steady-state VI 20-s responding will occur at
t, because the span of time allowed by substi-
tuting Equation 12 into Equation 9 comes
solely from the VI 20-s schedule. One end of

this span of time is shown in the bottom panel
of Figure 3.

The expected plot of the response rate is
shown in Figure 4. The dynamics are slow
because the time of the transition is set by ¢;,,.
The slope of the ramp will go as 1/¢;,. Equa-
tions 13, 14, 15, and 16 describe steps along
a quite simple transition progess. The contri-
butions from the VI 80-s schedule (Equation
13 and the first integral in Equations 14 and
15) slowly die out and are replaced by con-
tributions from the VI 20-s schedule (the sec-
ond integral in Equations 14 and 15 and Equa-
tion 16). Note that because it is a parameter
of the kernel, ¢, that sets the scale for the
transition in behavior, one would obtain the
same qualitative result (i.e., a linear ramp) if
any pair of schedules were considered.

We used Equation 12 for calculational ease.
How does the form of the organism’s transition
in behavior change if we use a more realistic
kernel? The question can be answered in the
following manner. First, it follows from linear
superposition that one can always express the
behavior at a given time ¢ after the VI 20-s
schedule comes into effect as the sum of two
integrals, such as in Equations 14 or 15. For
the case of a general linear kernel, the behav-
ior, at a time ¢ > 0, with a transition from VI
80 s to a VI 20 s at time zero, is given by

B(t) = J‘_" . G(t — t")Ryso(t')dt

+ f lG(t = t)Ryo(t)dt’. (17)
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Second, as we have already mentioned, the idea
that steady-state operant behavior is estab-
lished by a reinforcement schedule requires
that, within our analysis, after a span of time
tym has elapsed, a prior reinforcer will have no
effect on present behavior. Hence, for the case
when ¢ > ¢, the first integral on the right
hand side of Equation 17 will be driven to zero
by G(t — t')’s approach of zero for ¢t — t' >
tim- Additionally, the limited domain of non-
zero values for G(¢ — t') will truncate the
integration interval for the second integral on
the right side of Equation 17. If we ignore the
precise details of how G(¢ — t') — 0 and simply
use ¢y, as a hard cutoff, the second integral on
the right side of Equation 17 for ¢ > t;, can
be approximated as

B(t) = J: :m G(t — t)Ryno(t)dt'. (18)

Equation 18 is an expression for the steady-
state VI 20-s behavior seen for all times after
tym- One can simplify further by noting that a
VI 20-s schedule’s properties do not depend
on time! so that any interval of length ¢, can
be used, and hence, the steady-state VI 20-s
behavior is

Bult) = f " Gltun — YR}, (19)

where ¢t > t;,,. By a similar argument one can
show that the expression for the behavior just
before the transition in reinforcement sched-
ule, B(0), is a suitable approximation for the
steady-state VI 80-s behavior. The appropri-
ate expression is

Byigot) = ﬁ N G(—t)Rvig(t)dt',  (20)

for all ¢ < 0. In summary, Equations 19 and
20 provide expressions for steady-state behav-
ior before and after the transition. Addition-
ally, Equation 17 describes the transitions, ef-
fectively the dynamics, that follow from a linear
analysis. Finally, the transition region will be

! We are making a distinction between the properties
of a VI 20-s schedule, such as average rate of reinforce-
ment, that are unchanging with the passage of time and
the schedule itself, which clearly does depend on time.
Additionally, we are glossing over such details as the en-
semble averaging necessary in a proper calculation with
a VI schedule.
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~t;m in length independent of the specific form
used for G(t — ¢t').

At this point, although one might be willing
to accept that Equation 17 is the general ex-
pression for an organism’s operant behavior
when driven by a step transition in reinforce-
ment schedule, one might also find that its
application to data may not seem immediately
obvious. The computations needed for a quan-
titative description of behavior within the tran-
sition region would take us far beyond the
goals of the present paper. However, by con-
sidering the ratio of behavior generated by the
VI 20-s reinforcement schedule within the
transition to steady-state VI 20-s behavior, we
can obtain a rough idea for the dependence of
the transition’s form upon the kernel. The ra-
tio of the second integral in Equation 17 to
Equation 19,

BO _ [GE — )Rl
Byio(t)  J§G(tim — t')Rypo(t')dt”’

will give the proportion of the behavior due to
the VI 20-s schedule. Because the VI 20-s
schedule’s properties do not depend on time,
the time evolution of Equation 21 will be a
result of G(¢ — t')’s time dependence. Hence
the ratio will be approximately

B(t) J4G(t — ¢)dt'
Byiao(t) - J§=G by — t)dt'~

Assuming that properties of the behavior, such
as local rate, also are proportional to Equation
22, one can use this expression to estimate how
such properties evolve during the transition for
any given kernel. For example, substitution of
Equation 12 into Equation 22 yields the linear
ramp of Figure 4. Similarly, if one employed
an exponential kernel proportional to e=¢=/,
the steady-state VI 20-s behavior will replace
the VI 80-s behavior as ~e~*/*. By setting 7 to
% tiim, one would predict a more rapid initial
change in behavior followed by a slow settling
time of about ¢, in duration.

Another experimental situation that can test
the dynamics predicted by the linear analysis
are reinforcement schedules with a periodic
variation in their properties. Examples of pe-
riodic schedules are Staddon’s cyclic-interval
(1964) and McDowell and Sulzen’s ramp
schedules (1981). One probably cannot ex-
plain the behavior supported by either of these
schedules within a linear formulation. On such

21)

(22)
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periodic schedules, which have variations that
are fast in comparison to the estimate of ¢y,
obtained from the time to steady-state behav-
ior, the predicted behavior would be just an
averaged rate, rather than the slewed rate of
responding that is actually measured. At a
minimum, for an organism to sense, and hence
respond to, a local change in a reinforcement
schedule’s properties, it must make correlated
reference to two times in the past. The inde-
pendent references to prior reinforcers inher-
ent in Equation 8 are insufficient to estimate
changes in the underlying schedule. The basic
point is this: Without using the time interval
and ordering of the two references, the organ-
ism could not determine a trend. The notion
that an organism’s current behavior can de-
pend on the correlations within the reinforce-
ment schedule at two prior times foreshadows
the contents of the balance of this paper.

QUADRATIC (SECOND-ORDER)
ANALYSIS IN THE
TIME DOMAIN

Although the linear analysis has had con-
siderable success in describing steady-state
(static) behavior, it appears to have some an-
alytic properties that are at odds with what is
known about behavioral dynamics. Because
Equation 8 is based on linear superposition,
the analysis cannot describe behavior that has
an explicit dependence upon correlations
within the reinforcement schedule. The sim-
plest form of correlation involves the simul-
taneous consideration of the reinforcement
schedule at two times prior to the present be-
havior. The idea that present behavior depends
on the reinforcement schedule at two times in
the past can be expressed as a quadratic re-
lationship between present behavior and past
reinforcement. It turns out that our analysis
has a nonlinear extension that, as a special
case, can describe a relationship between two-
point correlations in the reinforcement sched-
ule and behavior. In the balance of this paper
we will explain just the quadratic extension
of our analysis and then show how the inclu-
sion of two-point correlations can yield a dif-
ferent response to the simple VI 80-s to VI
20-s transition discussed above.

One method to extend the time-domain ver-
sion of our linear systems analysis is to add a
term that has a quadratic dependence on the
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reinforcement schedule over the interval 0 -
t. To obtain the most general quadratic de-
pendence means forming a product of the re-
inforcement schedule over the interval 0 — ¢
with itself. In practice, a quadratic dependence
will mean that for a set of discrete reinforcers,
the second-order behavior is given by the square
of a sum of terms. To get both an idea of why
a quadratic analysis will prove useful and as
a suggestion of the route ahead, the reader
should consider what the square of a sum of
terms involves. Stripped of the mathematical
niceties that are needed for computational con-
venience, including a quadratic dependence for
a set of discrete reinforcers within the analysis
involves finding the square of the right side of
Equation 6. Note that the cross terms from
such a binomial expansion will involve rein-
forcers delivered at two different times. It will
be these cross terms that give rise to the two-
point correlations. For the more general case
of a continuous reinforcement schedule, the
second-order form analogous to Equation 8
will come out as a double integral. The new
term can also be called second order because
there will be two factors of the reinforcement
schedule involved. We denote the new term as
B,(2), so the behavior is now given as

B(t) = Bi(t) + By(t), (23)

where B,(t) is the behavior of Equation 8 alone.

At this point, we should note that we arrived
at our expression for B,(¢) from a somewhat
different set of considerations. Equation 8 is
reminiscent of the first term in a series ex-
pansion developed by Kubo to describe irre-
versible processes (Kubo, 1957; Kubo & To-
mita, 1954). Kubo’s ideas suggested a method
by which the linear analysis for simple-sched-
ule behavior could be extended as a series of
increasingly nonlinear terms. Accordingly,
there are higher order terms (e.g., cubic, quar-
tic, etc.) that can be added to Equation 23. The
more general and formal considerations that
lead to the full series expansion are discussed
elsewhere (McDowell et al., in press).

We will develop the second-order term B,(t)
by a route roughly analogous to that used in
reaching the first-order expression of Equation
8. As in the linear development, the most sig-
nificant action concerns the construction of the
kernel. Because the second-order term speaks
to situations in which two prior times have a
simultaneous effect on present behavior, the
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second-order kernel will have two time differ-
ence arguments. The reader should pay special
attention to the introduction and development
of the second-order kernel’s arguments.

One Reinforcer in Second Order

For a single discrete reinforcer in the inter-
val 0 — ¢, the behavior due to just a second-
order process is given by

By(t) = Gyt — O)REHT, 249

where G,(¢t — t') is a characteristic of the or-
ganism. Because only a single time prior to the
present behavior, ¢/, is of relevance, the second-
order kernel can only depend on one time dif-
ference, ¢ — t', in the single reinforcer situation.
As a result, Equation 24 does not suggest any
obvious new effects. We included this situation
mainly to establish notation. Note that G,(t —
t') will in general be different than G(¢ — ¢').

Two or More Reinforcers in Second Order

With two discrete reinforcers in the interval
0 - ¢, cross terms are possible. The behavior
due to just a second-order process is given by

By(t) = Gyt — £)[R(E)P
+ Gyt — )[R(E"P
+ 2G,(¢t — ¢, t — t")R("R(").
(25)

G,(t — t', t — t") is a characteristic of the
organism that describes the importance to the
organism’s behavior of pairs of reinforcers. For
full generality, we allow for a dependence upon
the time difference to both members of the pair.
For example, if either member of the rein-
forcer pair was delivered a very long time prior
to the present behavior, one expects G,(¢t — ¢/,
t—1t") = 0. G,(t — t',t — ¢t")’s form is new
with second order. Notice the difference in
arguments between G,(t — ¢', ¢t — t") and G,(¢
— t') that arose in the single reinforcer case.
The cross term involving G,(t — ¢/, ¢t — ¢") is
describing an interaction between or the cor-
related effect of the two reinforcers. One can
argue that such interactions exist based on the
retroactive and proactive effects of reinforcers
measured by Catania, Sagvolden, and Keller
(1988).

Although Equation 25 gives all the behav-
iorally salient aspects for a quadratic depen-
dence upon two reinforcers, it is somewhat
unwieldy. With a suitable redefinition, one can
get a common form for both G,(t — ¢/, ¢ — ¢t”)
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and G,(t — t'). There are two mathematical
points that underlie the redefinition. First, if
t — t' and ¢ — t” are known, then ¢t — ¢" is
also known. Hence one can express G, as a
function of any two of these three time differ-
ence arguments. Second, one can always con-
sider a term like that involving [R(t')]? as a
pair of reinforcers delivered with zero sepa-
ration. As a result, the two second-order ker-
nels of Equation 25 can use a common form.
The second-order behavior due to two rein-
forcers may be rewritten as

By(t) = Gy(t — ¢/, OOR(t)R()
+ Gy(t — t", O)R(t"R(")
+ Gyt — ¢, ¢ — t")RE)R(").
(26)

Note that the factor of 2 that appears in the
third term of Equation 25 can be absorbed into
G,(t — t', t' — t") as part of the redefinition.
A more detailed discussion of the redefinition
that steps from Equation 25 to Equation 26
is in McDowell et al. (in press). More im-
portant than the redefinition itself is that one
can show that the second-order behavior, when
driven by any number of reinforcers, will still
only have terms of just the two types seen in
Equation 26 (McDowell et al., in press). This
demonstration proceeds by explicit construc-
tion of the second-order term for greater num-
bers of reinforcers. It is an interesting bit of
algebra, but one that has little relevance to
dynamics. As noted, the important outcome of
these considerations is that there are just two
types of terms in second order. The only two
types of terms possible as second-order con-
tributions are (a) products of the schedule with
itself at a single time, such as G,(t — ¢,
O0)R(t")R(t"); or (b) products of the schedule
with itself at two different times, such as G,(¢
=t t — t"YRWRE").

General Second-Order Form

The general second-order term for any R(¢)
extends the summation of Equation 26 to all
possible pairs of times in the interval 0 — ¢
Not too surprisingly, such a sum over all pairs
of times is given by a double integral. The
expression is

By(t) =

f ‘dt’ f ' G,(¢ = ¢, t' — " )R(')R(")dt".
(27)
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The demonstration that Equation 27 is a proper
generalization of Equation 26 for a piecewise
continuous R(t) is somewhat lengthy. For the
present we will confine the discussion to show-
ing that Equation 27 has both types of second-
order contribution that became apparent when
considering just two reinforcers. In the com-
plete development of Equation 27, technical
details, such as avoidance of double counting,
become important. A reader interested in the
detailed development of Equation 27 should
see McDowell et al. (in press).

To see that Equation 27 contains both types
of second-order contribution, first consider the
integration over dt”. At the upper limit of the
integration ¢' = ¢”, the integrand of Equation
27 has the form

G,(t — ¢, O)R(R("). (28)

This is the product of the reinforcement sched-
ule with itself at a single point in time. The
product of the reinforcement schedule with it-
self at two different times comes from the rest
of the interval 0 — ¢, because ¢t” < t' and the
integrand has the form

Gyt —t',t' — t")RE"R(). (29)

The complete second-order term results from
the integration over dt' that varies ¢’ across the
interval 0 — ¢. Hence, Equation 27 has the
only two types of product possible in second
order and sums over such contributions from
the entire interval 0 - ¢.

If one wishes to consider all possible pairs
of time within the more general interval of
time ¢, — ¢, then Equation 27 becomes

Bz(t)‘= ’
f dt’f Gy(t — ¢, ' — t")R(')R(t")dt".
to to

(30)
The relationship between Equation 27 and
Equation 30 is the second-order analogy of
that between Equation 8 and Equation 9. As
in the linear case, this generalization is useful
when the situation dictates a meaning for ¢ =
0 other than the start of the reinforcement
schedule.

A SEPARABLE KERNEL AND SOME
SECOND-ORDER DYNAMICS

The interactions or correlations within the
reinforcement schedule at different times can
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allow a description of an organism’s sensitivity
to transitions in the reinforcement schedule.
As with the earlier discussion of linear dy-
namics, we will employ a special kernel. This
special second-order kernel will provide a sim-
ple illustration of the role pair interactions or
two-point correlations play in second order.
Once we have shown how this special second-
order kernel isolates a particular reinforce-
ment pairing, we will return to the step tran-
sition schedule. The reader should bear in mind
that statements about the second-order term
based on the one special case kernel are some-
what speculative. In other words, what follows
is simply an example of how the second-order
term can be used to describe a dynamic effect.
Consider the kernel

Gyt — t', t' — t") = g,(t — t)8(t' — t" — At),
(31)

where g,(t — t') is a function that describes
the effect on operant behavior at time ¢ of
reinforcers separated by the fixed time interval
At.2 The d-function allows us to select only
those contributions with a separation in time
of At. Upon substitution of Equation 31 into
Equation 27, the second-order term becomes

B,(t)= J; lR(t'—At)gz(t-—t')R(t')dt'. (32)

In Equation 32 one can see explicitly that this
form for the second-order behavior connects
or correlates the reinforcement schedule at two
times in the past. Such a two-point correlation
may prove helpful when using the analysis to
describe responding through a transition of the
schedule.

As an illustration of how the dynamics
change when the effects of a local two-point
correlation are included, we will again con-
sider the step transition from a VI 80-s to a
VI 20-s schedule. For ¢ < 0 the mean inter-

2 This kernel employs the Dirac §-function, which is
defined by

J;bf(x)'s(x — xo)dx = f(x,) ,

where a =< x, < b. Delta functions are used to select out
a single contribution to an integral. In the present case,
the é-function is employed to pick off a single time dif-
ference in the second-order term. For a more general ex-
planation on the use of é-functions, an interested reader
should consult a mathematical methods text (Arfkin, 1985;
Boas, 1983).
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reinforcement interval is 80 s, and for ¢ > 0
the mean interreinforcement interval is 20 s.
So, we modify Equation 31 to pick off just
these two time intervals as

Gy(t—¢t,t' — ") =
—g,(t — t)e(t' — ¢t — 80)
+ go(t — to( — t" — 20). (33)

The resulting expression for the ¢ > 0 behavior
will be

B(t)= J:;G,(t —t"R(t")dt'

- f R(¢ — 80)g(—t)R(t")dt'

+ f 'R(t' —20)g,(t —t"YR(")dt'. (34)
0

In Equation 34 the two terms that have been
added to the linear (first-order) behavior are
sensitive to either the interreinforcement in-
terval typical of a VI 80-s schedule (the second
integral) or the interreinforcement interval
typical of a VI 20-s schedule (the third inte-
gral). Effectively what we have done with the
d-function factors of Equation 33 is to create
a specialized sensitivity to the expected two-
point correlations present in the schedule be-
fore and after the transition. By adjusting the
time scale g,(t — t') relative to G,(t — t')’s
time scale, given by ¢;,,, one can get the same
steady-state behavior and a more reasonable
response to a reinforcement schedule transi-
tion. For example, if g,(¢ — t') is significantly
different from zero only over a much briefer

domain of ¢ — ¢’ when compared to G,(t —

t')’s nonzero domain, then the effect of the
second and third integrals is a quick increase
in responding after the transition.

We are not asserting that the higher order
terms have done anything at present. Instead
the above simply demonstrates that the second-
order term has, in principle, the necessary an-
alytic properties to sense the local change in
two-point correlation that occurs at a transi-
tion. Hence, it is possible that a second-order
analysis will yield a better description of be-
havioral dynamics. Whether we can describe
an organism’s general sensitivity to changes in
a reinforcement schedule using a second-order
analysis is the subject of current work.
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CONCLUSIONS

In this paper we have shown what quali-
tative character is expected for the behavioral
dynamics based on the linear systems analysis.
We have used a time-domain development of
the analysis to provide a framework for the
discussion. The dynamics expected for a linear
description using a simple rectangular kernel
are slow. In addition, the predicted linear be-
havior is insensitive to a transition itself in the
reinforcement schedule (i.e., the correlational
properties of the schedule can play no role in
determining the organism’s behavior in a lin-
ear description). The time-domain develop-
ment for the analysis has suggested a quadratic
extension that may describe other types of dy-
namic processes. Finally, we have shown an
example of the resulting second-order dynam-
ics that will take a schedule’s transitions into
account.
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